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            Explicit Analytical Relations for Stress-controlled
Rheodynamical Quantities in the case of Zener-Arrhenius Model

I. Underlying relations
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Aiming to develop a self-contained presentation regarding the thermorheodynamical behaviour of solid-like
polymer materials, the Zener - Arrhenius model is used, the frequency or/and temperature dependences
being considered in the case of stress-controlled conditions. Accordingly, the full set of the explicit general
analytical relations for the primary characteristic thermorheodynamical quantities - the storage, loss and
absolute compliances, as well as the loss factor - and the corresponding secondary ones - the storage, loss
and absolute moduli - is  obtained by using the appropriate rheological parameters including the low and
high frequency limit values of the storage compliance, as well as the retardation time. These underlying
analytical relations are provided in forms directly suitable for numerical simulation of frequency dependence
in isothermal frequency - dependence, and as well for the temperature - dependence in isochronal
circumstances.
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The use of well established conditions of rheological
characterization provides distinct data concerning the
peculiarities of mechanical response including the stiffness
or/and deformation response of materials [1].

In the case of viscoelastic behaviour, the appropriate
description framework of stiffness-like features needs the
employ of strain-controlled conditions, resulting in a
complete set of rheodynamical quantities including both
the primary, modulus-like quantities, as well as the
secondary ones, corresponding compliances [2-6].

Moreover, it is noteworthy to point out there is also the
complementary framework of stress-controlled conditions,
when the deformation-like response means the
consideration of primary rheodynamical quantities
containing the primary, compliance-like quantities, as well
the secondary ones, corresponding moduli [7-17].

Consequently,  in order to reveal the typical way in which
the linear viscoelastic thermorheodynamical quantities
arise and exhibit well defined dependences on frequency
or/and temperature in isothermal and isochronal
circumstances, respectively, the frame of a coupled Zener-
Arrhenius model is considered.

The linear viscoelastic framework of solid-like behavior
is evidenced by the use of the ε-σ rheological equation

(1)

given in terms of ε and σ (the strain and stress, respectively)
rheological variables and po, p1 and qo, q1 nominal
temperature dependent rheological parameters, the
influence of time being included by the presence of time
derivative operator, Dt =∂/∂t .

Consequently, the proposed model appear to be a three
- parameter one, i. e.,

(2.1)

the corresponding characteristic rheological parameters
Co(T), C1(T), D1(T) being given as

         .

     (3)

In the case of a controlled sinusoidal dynamic stress,

(4)

where σ stands for the complex form of a sinusoidal
excitation,  σo is the strain amplitude and ω denotes the
angular frequency of the given sinusoidal stress - the
corresponding dynamic form of rheological equation results
as  (Dt = iω)

           (2.2)

The corresponding strain response - defined by the
amplitude εo, the same frequency as that of the input stress,
and delayed with the phase lag angle, δj, between the
excitation and response - results  from the complex
deformation ε, as

(5)

Consequently, by definition

(6)

is the complex compliance, J, while J’ and J” are the
storage and loss compliance, respectively. On the other
hand, for the absolute (viscoelastic) compliance, |J*|,
results

(7)

~

~
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whereas βJ=tanδJ  stands for the corresponding loss factor,
being given as

(8)

Taking into account the fact that in the case of a σ-
controlled excitation it is meaningful to interpret the
quantities J’, J” as direct primary rheological quantities,
|J*|, βj  result to be the derivate primary ones. Furthermore,
in order to have the complete set of σ-rheological
quantities it is necessary to consider also the modulus-like
quantities, i. e., the corresponding storage modulus, M’J,

(9)

loss modulus, M”J,

(10)

and absolute modulus, |M*J|,

          (11)

which represent the secondary rheodynamical quantities.
Given the need to include in the above quoted

rheodynamical quantities, in an explicit way the
contribution of both frequency and temperature, it is
suggested that - in principle, besides the frequency
dependence, that of the temperature one - the stress rate
could be given by employing the most frequently used
exponential Arrhenius-like relation [18-22]. Thus, in a
natural way, the σ - controlled retardation time, τσ is
considered to be of the form

           (12)

where τσ∞=τσ(∞) stands for the prefactor (pre-exponential
factor) - the value of the corresponding retardation time at
infinite temperature (if θσ ≠ 0) - while θσ = Aσ /R, i. e., the
ratio of σ - Arrhenius activation energy, Aσ, to the universal
gas constant, R=8.314 J/(mol*K) - indicates a “virtual”σ-
temperature.

Accordingly, the complete “frequency and temperature”
form of the rheodynamic equation is

   (2.3)
where

                 (13)

the different rheological parameters being given in terms
of the storage compliance at low (l) and high limit (h)
frequency, respectively, as well as the σ - characteristic
retardation time τσ.

Results and discussions
Due to the general form of the dynamic rheological

equation (2. 3), it results that there are distinct
dependences concerning the characteristic rheodynamical
quantities on both frequency and temperature. In order to
develop this approach from the standpoint of the complete
set of evidenced rheodynamical quantities defined by the
relations (6 - 11), it is necessary to draw the attention on
essential circumstances including those of isothermal one
- when the frequency dependence is considered - and of

isochronal one - when the temperature dependence is
examined.

Thus, the presentation of explicit analytical relations for
a sinusoidal stress-controlled excitation needs, on the hand,
the consideration of both the general definition of frequency
and temperature dependences - (ω, T), and on the other
hand, of those of characteristic forms - (ω; T) and (T; ω),
respectively, when the frequency dependence is taken into
account at given temperature (isothermal circumstances),
and for the temperature dependence at fixed frequency
(isochronal circumstances) [13].

The explicit analytical relations result as follows.

Direct primary quantities
The general expression of the storage compliance,

obtained by using  the relations (2), (6) and (13), is

(14)

Consequently, in the case of frequency dependence at
fixed temperature, T=T, results

     (14. 1)

and

               (14. 2)

for the temperature dependence at fixed frequency, ω = ω.
- The general form of the loss compliance is, taking into

account (2), (6) and (13),

  (15)

For the ω - dependence at given temperature, T=T,

(15.1)

and

 (15.2)
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in the case of T - dependence at fixed frequency, ω=ω.

Derivate primary quantities
- The general expression of the absolute compliance, as

results from (2), (8) and (13), is

(16)

Correspondingly, for the frequency dependence at given
temperature, T=T, one obtains

     (16.1)

and

(16.2)

in the case of temperature dependence at given
frequency, ω=ω.

- The general expression of the loss factor is in virtue of
(2), (8)and (13), by

(17)

while for the ω - dependence at fixed temperature, T = T,

                  (17.1)

and

             (17.2)

in the case of dependence at given frequency, ω = ω.

Coresponding secondary quantities
- The general form of the corresponding storage modulus

results, on the basis of (2), (9) and (13), as

  (18)

while for the frequency dependence at given temperature,
T=T, results

           (18.1)

and

(18.2)

in the case of temperature dependence at given frequency,
ω = ω.

- The general expression of the corresponding  loss
modulus is, taking into account (2), (10) and(13), given by

                     (19)

whereas for the ω - dependence at fixed temperature, T=T,

            (19.1)

and

                 (19.2)

in the case of dependence at given frequency, ω = ω .
- The general form of the corresponding absolute

modulus results, given (2), (11) and (13), is

          (20)
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so that for the frequency dependence at given temperature,
T=T, one finds

(20.1)

and

       (20.2)

in the case of temperature dependence at given frequency,
ω =ω .

The explicit analytical relations obtained for the
considered complete set of seven rheodynamical
quantities provide a lot of consequences concerning the
different forms of considered dependences as well as from
the standpoint of characteristic, extremum (maximum and
minimum) and inflection, points to be determined in the
framework of numerical modeling.

In the case of isothermal circumstances, T = T, the
resulting frequency dependence, at stress-controlled
conditions, reveals

- for the direct primary rheodynamical quantities -
J’(ω;T) and J”(ω;T) ω the terms which are present in the
characteristic ratios result to be of same order (2 to 2) for
J’ , whereas in the case of  J” there is a dissimilar one, (1 to
2);

- for the derivate primary rheodynamical quantities -
|J*(ω;T) and βj(ω;T) - the characteristic ratio is (2 to 2) in
the case of |J*|, and (1 to 2) for βJ;

- for the corresponding secondary rheodynamical
quantities - M’J(ω;T), M”J(ω;T) and |M*J(ω;T)| - the values
of characteristic ratios are (2 to 2) in the case of  M’J and
|M*J|, while  (1 to 2) it is obtained for M”J.

On the other hand, in the case of isochronal
circumstances, ω=ω, at stress-controlled conditions, the
temperature dependence points out:

- for the direct primary rheodynamical quantities, J’(Τ;
ω) and J”(Τ;ω), the T exponentials  appearing in the
characteristic ratios  reveals that in the case of  J’ the terms
are of same order (2 to 2), and dissimilar ones (1 to 2) for
J” ;

- for the derivate primary rheodynamical quantities -
|J*(Τ;ω) | and βJ(Τ;ω) - the order of exponential terms
which appear in the characteristic ratios is (2 to 2) in the
case of |J*|, while the (1 to 2) result it is obtained for βJ;

- for the corresponding secondary rheodynamical
quantities - M’J(Τ;ω), M”J(Τ;ω), and M*J(Τ;ω)|- the
characteristic ratios of exponential terms are given as (2
to 2)  in the case of M’J and  |M*J|, and (1 to 2) for M”J.

Conclusions
The set of explicit analytical relations obtained in the

case of dynamic stress-controlled processes for both the

primary and corresponding secondary rheological
quantities reveals well definite qualitative features
concerning the frequency or/and temperature variation
trends.

Accordingly, it is pointed out the contribution of frequency
dependence, in isothermal circumstances, while for the
temperature dependence, in isochronal circumstances,  the
typical involvement of exponential terms containing the
σ- activation energy (and the corresponding virtual
temperature) are the active ones.

Moreover, regarding the direct thermorheodynamical
quantities - the storage and absolute compliances - and
the complementary ones - the storage and absolute
compliances - respectively, there are typical frequency
dependences, the situation being somewhat similar in
case of temperature dependence.

Hereafter, even at a first glance, for the other evidenced
direct thermorheodynamical quantities, including the loss
compliance and the loss factor, as well as for the
corresponding loss modulus, the frequency or temperature
dependences come out as being analogous.

Distinct features of the full set of characteristic
thermorheodynamical quantities in stress-controlled
conditions remain to be illustrated in respect of noticeable
frequency or/and temperature dependences by using the
complex numerical simulation option.
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